ГОО ВПО «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ ИМ. М. ГОРЬКОГО»
Кафедра терапии ФИПО им. проф. А.И. Дядыка

Диабетическая кардиомиопатия: определение, патогенез, подходы к ведению пациентов

Ассистент Могилевская К.Э.

«Поражение сердечно-сосудистой системы при эндокринной патологии».
Донецк, 15 октября 2021 г.

Существует хорошо известная взаимосвязь между сахарным диабетом (СД) и сердечно-сосудистыми заболеваниями (ССЗ).

Несколько исследований продемонстрировали эпидемиологическую связь между сердечной недостаточностью (СН) и СД.

Очевидно, что СД может увеличивать риск СН независимо от традиционных факторов риска СН, включая артериальную гипертонию (АГ), ишемическую болезнь сердца (ИБС) и клапанные пороки сердца.

В настоящее время известно, что поражение миокарда при СД 2-го типа определяется не только атеросклеротическим поражением коронарных артерий, но и наличием специфических изменений, свойственных «поздним» осложнениям диабета (микроангиопатия, нейропатия).

Термин **«диабетическая кардиомиопатия» (ДКМ)** был предложен *Rubler S. et al.* после посмертных исследований больных диабетом с хронической СН, у которых ИБС и другие заболевания, сопровождающиеся структурными изменениями сердца, а также АГ и злоупотребление алкоголем были исключены как возможные причины.

По представлению Aneja A. et al. ДКМ – это проявление СД, которое характеризуется миокардиальной дисфункцией при отсутствии АГ и структурных изменений сердца, таких как патология клапанного аппарата или ИБС.

Lorenzo-Almoros A. et al. дополнили определение ДКМ тем, что, по их мнению, данная патология характеризуется наличием в большей степени диастолической дисфункции левого желудочка (ЛЖ).

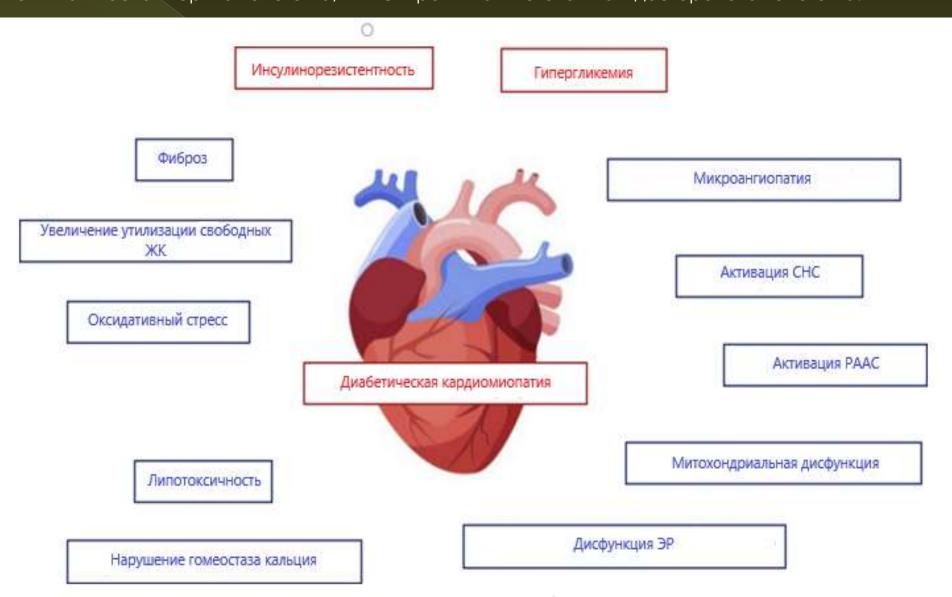
Marcinkiewicz A. et al. считают, что ДКМ – это результат длительного влияния на миокард метаболических нарушений, связанных в основном с инсулинорезистентностью и сверхэкспрессией резистина, которые развиваются еще на стадии предиабета и способствуют формированию и прогрессированию ишемии миокарда.

Фремингемское исследование сердца (Framingham Heart Study) показало, что частота развития СН была в два раза выше у мужчин с диабетом и в пять раз выше у женщин с диабетом по сравнению с контрольными субъектами.

С тех пор многие исследования продемонстрировали структурные и функциональные изменения миокарда пациентов с СД, не связанные с другими факторами риска ССЗ.

ДКМ не имеет специфических признаков и часто протекает без субъективной симптоматики.

При СД нарушения функций миокарда могут характеризоваться признаками, наблюдающимися при всех видах кардиомиопатии, однако наиболее часто встречается кардиопатия, сочетающая черты рестриктивной и гипертрофической.


Lorenzo-Almorós A, Tuñón J, Orejas M et al., Cardiovasc Diabetol., 2017; 16(1): 28 Marcinkiewicz A, Ostrowski S, Drzewoski J et al., Diabetol Metab Syndr., 2017; 9: 21

Тремя основными факторами риска развития ДКМ являются гипергликемия, гиперинсулинемия и инсулинорезистентность.

Анализ 20 985 пациентов с СД, включенных в национальный регистр Швеции, показал, что отношение рисков развития сердечной недостаточности составило 3,98 у пациентов с $HbA_{1C} \ge 10,5\%$ по сравнению с контрольной группой пациентов с $HbA_{1C} < 6,5\%$, даже после поправки на возраст, пол, длительность СД, факторы риска ССЗ и другие сопутствующие заболевания.

Патофизиология ДКМ подтверждает тот факт, что у пациентов с высоким уровнем HbA_{1C} наблюдается повышенное накопление продуктов гликирования, что является сильным фактором развития фиброза миокарда.

Рис. 1. Возможные механизмы, вовлеченные в патофизиологию диабетической кардиомиопатии. Основными метаболическими нарушениями, способствующими возникновению всех механизмов, ведущих к кардиальной дисфункции, являются инсулинорезистентность и гипергликемия. ЖК – жирные кислоты; ЭР – эндоплазматический ретикулум; СНС – симпатическая нервная система; РААС – ренин-ангиотензин-альдостероновая система.

В исследовании Strong Heart Study степень и частота диастолической дисфункции ΛX были прямо пропорциональны уровню HbA_{1C} .

Аналогичным образом, в другом исследовании пациенты с HbA_{1C} > 7,5% имели более высокую распространенность диастолической дисфункции, чем пациенты с HbA_{1C} < 7,5%.

Снижение уровня НЬА_{1С} снижает риск развития СН.

Фактически риск СН увеличивается с возрастом и продолжительностью СД.

В основе ДКМ лежат специфические нарушения энергетического обмена, которые являются пусковым механизмом функциональных и структурных изменений миокарда.

Известно, что аденозинтрифосфорная кислота (АТФ) синтезируется в митохондриях кардиомиоцитов при окислении специфических энергетических субстратов – глюкозы и жирных кислот.

Часть молекул АТФ образуется при расщеплении глюкозы (или гликогена) до пировиноградной кислоты в процессе гликолиза.

Однако основной энергетический выход дает последующее внутримитохондриальное окисление пировиноградной кислоты до ацетил-коэнзима А в цикле Кребса.

Альтернативным источником ацетил-коэнзима А является бета-окисление жирных кислот в митохондриях кардиомиоцитов.

Клетки миокарда практически не метаболизируют жирные кислоты.

При СД в связи с нарушением поглощения и окисления глюкозы компенсаторно активируется катаболизм жирных кислот.

В результате основным источником энергии в клетках миокарда становится бета-окисление жирных кислот – процесс, приводящий к повреждению клеток. В итоге нарушения углеводного и жирового обмена возникают нейроэндокринно-метаболическая дистрофия миокарда и различные нарушения функции сердца.

Особенностью метаболизма при СД являются интенсивное поступление свободных жирных кислот в миокард и ускоренное окисление в митохондриях кардиомиоцитов.

Избыток свободных жирных кислот в миокарде приводит к развитию нежелательных биохимических, электрофизиологических и механических эффектов.

К основному числу патофизиологических механизмов относят:

- повышение проницаемости эндотелия;
- структурные изменения сарколеммы и других мембранных образований клетки, изменение жидкостных и динамических свойств мембран;
- изменение работы потенциалзависимых натрий-, калий- и кальциевых каналов;
- возникновение биоэлектрической нестабильности миокарда;
- угнетение базального и стимулированного инсулином поглощения и окисления глюкозы;

- усиление синтеза триглицеридов тканями;
- повышение потребности миокарда в кислороде;
- ингибирование активности важнейших ферментов систем: Са²⁺-АТФазы саркоплазматического ретикулума, Na- и K-АТФазы, натрийкальциевого обмена и кальциевого насоса сарколеммы;
- ингибирование активного переноса аденина в митохондрии и снижение концентрации АТФ в миокарде;
- усиление симпатической иннервации, повышение чувствительности рецепторов и выброс ионов кальция из внутриклеточного депо.

Окислительный стресс (гликооксидация) приводит к дисфункции сосудистого эндотелия, патологии тромбоцитов и нарушению коагуляции. В связи с этим выделяют три основных гистопатогенетических типа повреждения сердца при СД:

1. Диабетическая вегетативная сердечная нейропатия, которая проявляется в уменьшении количества нервных волокон, их демиелинизации и дегенеративных изменениях в аксонах. Она характеризуется постоянной тахикардией, ортостатической гипотонией, фиксированным сердечным ритмом.

По данным ряда исследователей эволюция автономных дисфункций начинается с симпатической нервной системы, а потом присоединяются признаки поражения парасимпатической нервной системы. Обратного развития в данном процессе не описано. При этом отмечается адаптационная рефлекторная реакция сердечно-сосудистой системы на воздействие различных факторов, в том числе на физическую нагрузку, на переход из горизонтального в вертикальное положение.

- 2. Миокардиодистрофия характеризуется дистрофическими изменениями миокардиальных волокон и постепенным нарастанием СН.
- 3. Диабетическая ангиопатия с поражением микроциркуляторного звена и артерий (коронарных, церебральных и др.) аорты.

Преимущественное поражение крупных коронарных артерий проявляется в виде атеросклеротических бляшек, атеротромбозов и является гистоморфологическим признаком различных вариантов ИБС.

К ведущим клиническим синдромам относятся: кардиалгический, коронарной ишемии, аритмический, вегетативно-сосудистой дисфункции, метаболической недостаточности или миокардиодистрофии, астеноневротический и общий синдромы.

Методы лечения ДКМ

1. Ингибиторы АПФ / Блокаторы рецепторов ангиотензина-II

ИАПФ и БРА значительно снижают риск развития фиброза миокарда и жесткости ЛЖ.

Благоприятная роль ИАПФ/БРА при ДКМ является следствием их роли в предотвращении развития аномального отложения внеклеточного матрикса и активности фибробластов за счет снижения синтеза коллагена и повышения активности матриксной металлопротеиназы.

Они также модулируют ответ кардиомиоцитов на симпатическую систему и PAAC и снижают риск развития гипертрофии ЛЖ и ремоделирования миокарда.

В многочисленных рандомизированных исследованиях было показано, что ИАПФ снижают смертность как от всех причин, так и от сердечно-сосудистых заболеваний у пациентов с СД с наличием СН и с бессимптомной дисфункцией ЛЖ без СН.

2. Ингибитор рецептора ангиотензина-неприлизина (ARNi)

ARNi представляет собой комбинацию ингибитора рецептора ангиотензина-II и ингибитора неприлизина (валсартан+сакубитрил).

Этот препарат способен ослаблять процессы ремоделирования миокарда и фиброзные изменения в нем. В крупных исследованиях после 4 недель терапии ARNi наблюдалось значительное улучшение фракции выброса левого желудочка в группе лечения по сравнению с контрольной группой. Механизм, с помощью которого ингибитор неприлизина уменьшает фиброз миокарда, вероятно, включает ингибирование ангиотензин-II-зависимых и TGFзависимых фиброзных процессов с уменьшением индуцированного давлением ремоделирования миокарда. ARNi используются качестве препарата второй линии у пациентов с СН со сниженной фракцией выброса ЛЖ (ФВ ЛЖ), у которых сохраняются симптомы, несмотря на прием ИАПФ/БРА и антагониста альдостерона. Многие из этих пациентов также страдают диабетом. Поскольку ДКМ является **УНИКОЛЬНЫМ** клиническим субъектом, необходимы рандомизированные контролируемые исследования специально на этой популяции пациентов для оценки долгосрочных преимуществ ARNi.

3. Бета-адреноблокаторы (β-АБ)

β-АБ снижают частоту госпитализаций и летальность у пациентов с СН со сниженной ФВ ЛЖ. Было показано, что эти препараты предотвращают и обращают вспять многие структурные и функциональные изменения, которые происходят во время прогрессирования СН, предотвращая токсические эффекты катехоламинов. В-АБ, такие как карведилол, обладают антиадренергическим действием и снижают симпатомиметические эффекты у пациентов с ДКМ. Кроме того, они обладают антиоксидантным эффектом, что способствует предотвращению дисфункции ЛЖ. Фактически, длительный прием В-АБ может улучшить ФВ ЛЖ за счет увеличения ударного объема, снижения давления заклинивания легочной артерии, давления в правом предсердии и системного сосудистого сопротивления.

Комбинация ИАПФ и β-АБ оказывает чрезвычайно важное нейрогормональное действие, обеспечивая терапевтические возможности первой линии для пациентов с ДКМ.

4. Антагонисты альдостерона

Альдостерон является важным инициатором фиброза миокарда. Он также смещает вегетативный баланс в сторону симпатической нервной системы. Блокируя рецепторы альдостерона, спиронолактон увеличивает обратный захват норадреналина клетками миокарда.

Исследования показали, что спиронолактон снижает уровень пептидов проколлагена в сыворотке крови и угнетает обмен коллагена в миокарде, уменьшая повреждение сосудов и фиброз миокарда.

Благоприятные эффекты антагонистов альдостерона были продемонстрированы в исследовании RALES, которое показало, что лечение спиронолактоном снижает смертность от ССЗ, смертность от всех причин и количество госпитализаций у пациентов с III и IV функциональными классами СН и дисфункцией ЛЖ в дополнение к стандартной терапии ингибиторами АПФ.

Учитывая клиническую эффективность этих препаратов у пациентов с СД с сердечной недостаточностью, показана терапия ИАПФ, β-АБ и антагонистами альдостерона для пациентов с прогрессирующей сердечной недостаточностью III-IV классов по NYHA.

Однако, поскольку пациенты с СД имеют склероз юкста-гломерулярного аппарата и исходный почечный канальцевый ацидоз, эти пациенты могут быть более подвержены развитию гиперкалиемии, чем пациенты без СД.

Роль гипогликемических препаратов при ГКМП

1. Терапия инкретинами

Терапия инкретинами подразумевает использование агонистов рецептора глюкагоноподобного пептида-1 (арГГП-1) и ингибиторов дипептидил пептидазы-4 (иДПП-4) для лечения СД.

Эти препараты реализуют свой эффект на сердечнососудистую систему как опосредованно, влияя на метаболизм миокарда, так и оказывая прямое воздействие на кардиомиоциты и коронарную сосудистую сеть.

Метаболические эффекты возникают в результате повышения уровня инсулина и снижения уровня глюкагона с сопутствующим снижением уровней циркулирующих свободных жирных кислот. Это увеличивает поглощение глюкозы кардиомиоцитами и в то же время снижает утилизацию жирных кислот. Оба этих метаболических эффекта улучшают метаболизм миокарда и останавливают патологические метаболические пути, ведущие к сократительной дисфункции ЛЖ. Эти препараты также угнетают воспалительные процессы в клетках миокарда, что приводит к уменьшению воспалительного повреждения последнего.

2. Метформин

Ранее считалось, что метформин должен применяться с осторожностью у пациентов с СД с СН из-за его способности вызывать лактатацидоз.

Однако данные недавних исследований свидетельствуют о том, что метформин оказывает несколько благоприятных эффектов на патофизиологию ДКМ, снижая инсулинорезистентность.

Метформин снижает риск СН и смертности у пациентов с СД. Результаты исследований на животных показывают, что метформин увеличивает активность эндотелиального NO, снижает активность TNF-альфа и фактора роста фибробластов, тем самым уменьшая объем и ремоделирование ЛЖ, улучшая систолические и диастолические параметры.

Однако прием метформина следует ограничить у пациентов с острой декомпенсированной СН, сепсисом или гипоперфузией, чтобы избежать лактатацидоза.

3. Тиазолидиндионы

Эти препараты проявляют свое действие за счет активации PPARs-ү (рецепторы, активируемые пероксисомными пролифераторами (Peroxisome proliferator-activated receptors)) и способствуют противовоспалительному действию путем ингибирования воспалительных клеток.

Однако их использование в клинической практике ограничено в основном из-за способности вызывать отек и СН.

Тиазолидиндионы также способствуют увеличению веса, а ожирение увеличивает риск развития СН. В исследованиях, подтверждающих использование этих препаратов, были исключены пациенты с тяжелой СН III и IV функционального класса.

Следовательно, эти препараты не следует использовать у пациентов с декомпенсированной СН, а у лиц с какими-либо признаками или симптомами сердечной недостаточности – применять с осторожностью.

4. Препараты сульфонилмочевины

Препараты сульфонилмочевины часто используются у пациентов с СД.

Однако в исследованиях было показано, что эти препараты оказывают значительное влияние на вес и увеличивают индекс массы тела, а значит, повышают риск СН.

Они также способны вызывать значительную гипогликемию.

Учитывая клинически значимое повышение риска СН и других ССЗ, связанного с применением препаратов сульфонилмочевины по сравнению с метформином, для лиц, не переносящих метформин или нуждающихся в дополнительной терапии, необходимо рассмотреть назначение других препаратов.

5. Ингибиторы натрий-глюкозного котранспортера-2 (иНГЛТ-2)

иНГЛТ-2 недавно были предложены в качестве препаратов первой линии для достижения гликемического контроля у пациентов с СД и СН.

В плацебо-контролируемом рандомизированном клиническом исследовании *EMPA-REG OUTCOME* было показано, что эти препараты снижают частоту госпитализаций в связи с сердечной недостаточностью у пациентов с СД и снижают смертность от СС3.

Точные механизмы этих преимуществ еще недостаточно изучены.

иНГЛТ-2 имеют более низкий риск развития гипогликемии по сравнению с препаратами сульфонилмочевины и не вызывают увеличения веса.

иНГЛТ-2 потенциально могут войти в стандарты лечения пациентов с СД и СН.

Заключение

Лечения диабетической кардиомиопатии как таковой в настоящее время не существует.

При развитии дисфункции миокарда у больных с СД лечение принципиально не отличается от терапии пациентов без СД.

Тяжесть течения диабетической кардиомиопатии прямо пропорциональна уровню HbA_{1C} крови.

Таким образом тщательный контроль гликемии является краеугольным камнем профилактики дисфункции миокарда вследствие диабетической кардиомиопатии.

Резюмируя вышесказанное, можно утверждать, что СД – это не только дополнительный фактор риска сердечно-сосудистых осложнений, но и самостоятельное сердечно-сосудистое заболевание, вносящее свой индивидуальный вклад в поражение сердца.

