ГОО ВПО ДОННМУ ИМ. М. ГОРЬКОГО Кафедра факультетской терапии им. А. Я. Губергрица

Интерстициальные заболевания легких и COVID-19

Д. мед. н., проф. Моногарова Н. Е., К. мед. н., доц. Бородий К. Н., К. мед. н., доц. Семендяева Е. В., Асс. Шевченко Д. Ф.

20 октября 2022 г. г. Донецк

Актуальность

- ✓В последние годы во всем мире увеличивается количество пациентов с ИЗЛ. Это объясняется не только улучшением диагностики, но и истинным ростом заболеваемости.
- ✓ Большинство ИЗЛ характеризуется хроническим течением патологического процесса, связанного с диффузным, не ограниченным анатомическими областями легочным воспалением и фиброзом.
- ✓ Прогрессирующий фиброз легочной ткани отмечается у 18–32% всех больных с ИЗЛ. Это, прежде всего, идиопатический легочный фиброз, а также другие идиопатические пневмониты, хронический гиперсенситивный пневмонит, саркоидоз, поражение легких при иммуновоспалительных ревматических заболеваниях, васкулитах.

Актуальность

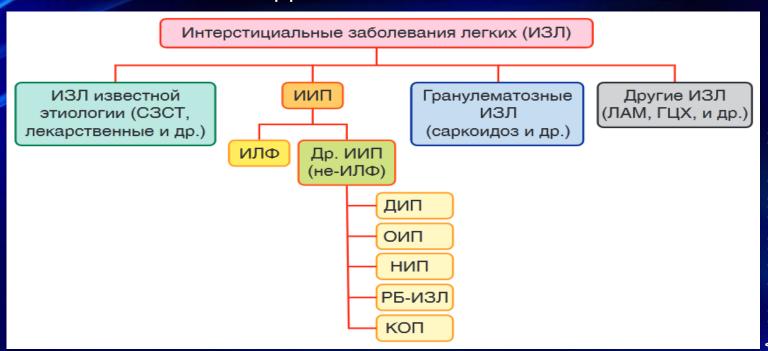
18-32% пациентов с ИЗЛ имеют прогрессирующее фиброзирующее заболевание лёгких

Данные онлайн-анкетирования 243 пульмонологов, 203 ревматологов, 40 интернистов из США, Японии, Германии, Франции, Италии, Испании и 50%-Великобритании 32% 31% 29% Пациенты 26% 24% 25% 21% 20% 18% ИЗЛ при ИЗЛ-РА изл-ссд иНСИП Неклассифи-ИЗЛ-Другие ИЗЛ ГΠ других СЗСТ цируемая ИИП саркоидоз (не ИЛФ)

ИЗЛ – интерстициальные заболевания лёгких, ССД – системная склеродермия, ГП – гиперчувствительный пневмонит, ИИП – идиопатические интерстициальные пневмонии, ИЛФ – идиопатический лёгочный фиброз, РА – ревматоидный артрит, иНСИП – идиопатические неспецифические пневмонии, СЗСТ – системное заболевание соединительной ткани.

Wijsenbeek et al. Curr Med Res Opin 2019

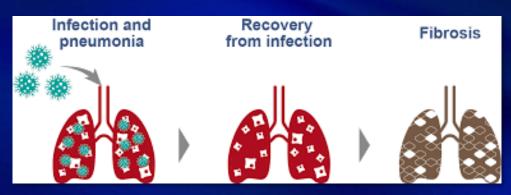
Актуальность


- ✓ Больные с ИЗЛ подвержены повышенному риску тяжелой формы COVID-19.
- ✓ Инфицирование вирусом SARS-CoV-2 повышает риск генерализации имеющегося у пациента ИЗЛ с развитием интерстициального легочного фиброза.
- ✓ Т.к. первые сравнительно крупные исследования пациентов, переболевших COVID-19, начали проводиться только с 2020 г., данные о долгосрочных клинических

исходах еще не доступны.

Определение

Интерстициальные заболевания легких (изл) —


гетерогенная группа заболеваний, для которых характерно вовлечение в патологический процесс, прежде всего, альвеол и периальвеолярного интерстиция, что приводит к расстройствам газообмена, нарушению вентиляционной функции легких по рестриктивному типу и диффузным интерстициальным изменениям, выявляемым при рентгенологической диагностике.

Американское торакальное общество / Европейское респираторное общество, 2013. Адаптировано

Основные гистологические варианты повреждения легочной ткани при коронавирусной пневмонии

- ✓ Эпителиальные изменения с диффузным альвеолярным повреждением (на любой стадии заболевания);
- ✓ Сосудистый паттерн с поражением микрососудов, (микро)тромбами и острой фибринозной и организующей пневмонией (на любой стадии заболевания);
- ✓ Фиброзный паттерн с интерстициальным фиброзом (примерно с 3-й недели заболевания).

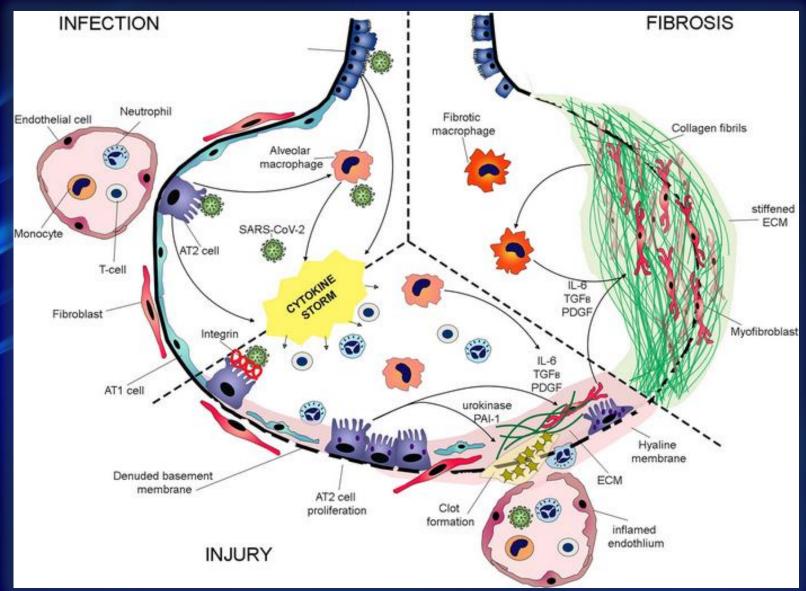
Механизмы развития легочного фиброза при заражении

SARS-CoV-2

цитокиновый шторм

> окислительный стресс

продукция провоспалительных цитокинов, в т.ч. IL-1, TNF, сильных индукторов синтетазы гиалуроновой кислоты-2 (HAS2), CD31 + в эндотелии, молекул адгезии (EpCAM +) в альвеолах


иммунная дисрегуляция

прямое вирусное воздействие

усиление сигнала трансформирующего фактора роста бета (TGF-β), мощного профибротического стимула

снижение клиренса АПФ-2 в легких, что ведет к нарушению регуляции ТGF-β и фактора роста соед.ткани СТGF

Механизмы развития легочного фиброза при заражении SARS-CoV-2

Степень поражения легких по данным КТ при COVID-19-ассоциированной пневмонии

КТ-0 — отсутствие КТ-признаков вирусной пневмонии на фоне типичной клинической картины и соответствующего эпидемиологического анамнеза;

КТ-1 — «матовое стекло» без иных признаков, вовлечено менее 25% легочной паренхимы;

КТ-2 — «матовое стекло» без иных признаков, вовлечено 25-50% легочной паренхимы;

КТ-3 — «матовое стекло» с участками консолидации. Вовлечение 50-75% паренхимы легкого. Увеличение объема поражения на 50% за 24 - 48 часов на фоне дыхательных нарушений, если исследования выполняются в динамике;

КТ-4 — диффузное уплотнение легочной ткани по типу «матового стекла» и участков консолидации в сочетании с ретикулярными изменениями. Гидроторакс двухсторонний, преобладает слева, поражено более 75% легких.

Особенности КТ-диагностики COVID-19 у пациентов с ИЗЛ

- ✓ У части больных с ИЗЛ лучевые симптомы COVID-19 совпадают с основным заболеванием, что затрудняет дифференциальную диагностику. В такой ситуации важно динамическое наблюдение с использованием КТ-ВР, комплексное исследование функции внешнего дыхания в комплексе с тщательным анализом клинических проявлений.
- ✓ У пациентов с ИЛФ КТ-проявления COVID-19 часто неотличимы от идиопатического обострения этой формы ИЗЛ.
- ✓ При наличии диссеминации, съедающей ресурс легочной ткани (в т.ч. обусловленной ИЗЛ), перестает работать оценка степени распространенности COVID-19-ассоциированного поражения легких, и пациента изначально необходимо рассматривать как более тяжелого.

Маркеры прогнозирования исхода COVID-19

На основе ретроспективного анализа образцов крови больных с тяжелым течением коронавирусной инфекции и математического моделирования ученые из г. Ухань (Китай) выделили три показателя, которые могут использоваться для прогнозирования исхода COVID-19:

√ Лимфопения

(↓ Т-хелперов, Т-супрессоров, вспомогательных Т-клеток памяти и регуляторных Т-клеток — особенно в тяжелых случаях!)

✓ Лактатдегидрогеназа ↑↑

(важный маркер повреждения легочной ткани, указывает на ↑ активности патологического процесса)

✓ С-реактивный белок↑

(отражает стойкое состояние воспаления)

Yan L. et al., 2020

Организующаяся

организующаяся

пневмония

пневмония, фибринозная

Ретикулярные изменения,

утолщение междольковых

или мультифокальный с-м,

Признаки фиброза (грубые

бронхоэктазия/бронхиоло-

«Новые» эмфизематозные

легких (пневматоцеле)

ретикулярные изменения

перестройки, утолщение прилегающей плевры

Фиброзоподобные,

субплевральные и

без «сотовой»

или кистозные изменения в

фиброзные тяжи с явным

искажением паренхимы

перегородок, фокальный

«матовые уплотнения,

паренхиматозные тяжи

субплевральные

или без него,

перестройка»

эктазы), «сотовая

פו"עוויייט	стратегия л
Изменения на КТ-ВР	Лечебные меропр

ИЯТИЯ

симптоматическая терапия; O₂-терапия

симптоматическая терапия; O₂-терапия

симптоматическая терапия; О2-терапия

симптоматическая терапия; О2-терапия

симптоматическая терапия; О2-терапия

средних/низких доз системных ГКС

средних/низких доз системных ГКС

Немедикаментозная терапия;

(по показаниям); рассмотреть

Немедикаментозная терапия;

(по показаниям); рассмотреть

Немедикаментозная терапия;

(по показаниям); рассмотреть

возможность назначения

(по показаниям)

(по показаниям)

антифибротических средств

Немедикаментозная терапия;

Немедикаментозная терапия;

возможность назначения

возможность назначения

лечения

Медикаментозная

терапия

Преднизолон: 25 мг/кг/сут. –

15 мг/сут. – 1 нед.; 10 мг/сут

Преднизолон: 25 мг/сут. – 2

15 мг/сут. – 1 нед.; 10 мг/сут – 1 нед.; 5 мг/сут. – 1 нед.

Нинтеданиб 300 мг/сут. или

пирфенидон по схеме в теч.

прогрессировании измен.

показателей (ФЖЕЛ, DLco)

6-ти и более мес. при

сохраняющемся

функциональных

Нет рекомендаций

N-ацетилцистеин

в течение 6–9–12 мес.

1800 мг/сут.

(VTB. 18.11.2021)

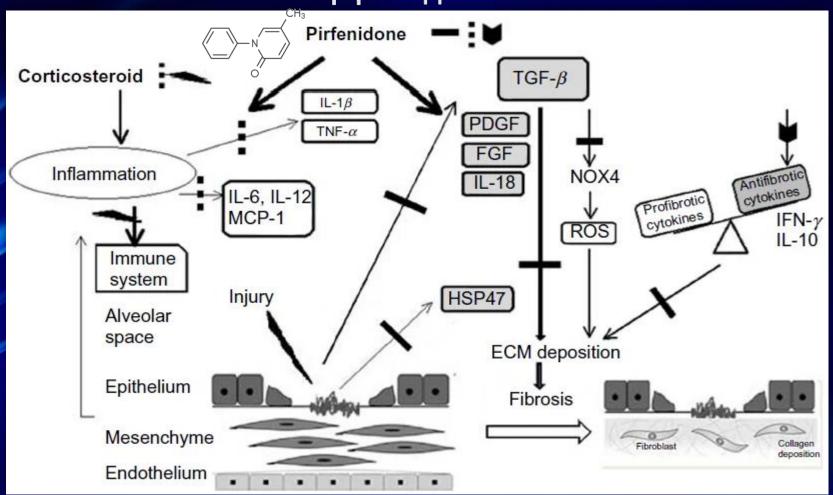
3 нед.; 20 мг/сут – 1 нед.;

– 1 нед.; 5 мг/сут. – 1 нед.

нед.; 20 мг/сут – 1 нед.;

Всего – 7 нед.

Всего – 6 нед.


Новые подходы к предупреждению развития постковидного легочного фиброза

Терапевтический агент Therapeutic agent	Идентификационный номер клинического исследования Clinical trial ID	Фаза клинических испытаний Clinical trial phase	Число участников Number of participants	Действие Action
Нинтеданиб Nintedanib	NCT04338802	П	96	Ингибитор тирозинкиназы Tyrosine kinase inhibitor
Пирфенидон Pirfenidon	NCT04282902	III	294	Противовоспалительное, антифибротическое, антиоксидантное Anti-inflammatory, antifibrotic, antioxidant
Тетрандрин Tetrandrin	NCT04308317	IV	60	Влияние на активные формы кислорода, каспазные пути и кальциевые каналы Effect on reactive oxygen species, caspase pathways and calcium channels
Фучжэнхуаю (капсулы) в сочетании с N-ацетилци- стеином Fuchzhenkhuayu (capsules) in combiantion with N-acetylcysteine	NCT04279197	II	136	Антифибротическое Antifibrotic
Анлуохуаксан (таблетки) Anluokhuaksan (tablets)	NCT04334265	-	750	Антифибротическое Antifibrotic
Амниотическая жидкость человека Human amniotic fluid	NCT04319731	ı	10	Противовоспалительное, антифибротическое, регенеративное Anti-inflammatory, antifibrotic, regenerative
Meзенхимальные стволо- вые клетки Mesenchymal stem cells	NCT04288102	II	90	Противовоспалительное, антифибротическое, регенеративное Anti-inflammatory, antifibrotic, regenerative
Гипербарический кислород Hyperbaric oxygen	NCT04327505	II	200	Противовоспалительное, снижение экспрессии IL-6, IL-1 β, TNF-α Anti-inflammatory, decreased expression of IL-6, IL-1 β, TNF-α

Кузубова Н.А. И соавт., 2021.

Антифибротическая терапия:

потенциальные механизмы подавления фиброгенеза пирфенидоном

Пирфенидон потенциально ингибирует выработку профиброзных цитокинов, воспалительных цитокинов, коллаген-специфического шаперона HSP-47 и активных форм кислорода, а также стимулирует синтез IFN-ү и IL-10. При этом он обладает небольшой супрессивной активностью

У. Takeda et al., 2014

Собственные наблюдения за течением коронавирусной инфекции SARS-CoV-2 у пациентов с ИЗЛ

Проанализированы анамнестические, клинико-лабораторные и инструментальные данные 21 пациента с ИЗЛ:

- идиопатический легочный фиброз 14 чел.;
- респ. бронхиолит-ассоциированный с ИЗЛ 1 чел.;
- гиперчувствительный пневмонит 2 чел.;
- неспецифическая ИП 2 чел.;
- криптогенная организующая пневмония 2 чел.

На примере трех пациентов с ИЛФ, получавших различную базисную терапию до COVID-19-ассоциированной пневмонии, представлены разные варианты исхода этого заболевания.

Женщина Н., 64 л.

Идиопатический легочный фиброз, стадия формирования «сотового легкого». Хроническое легочное сердце.

В апреле 2021 г. — COVID-19 с положительным лабораторным тестом U07.1., тяжелое течение. Двусторонняя полисегментарная пневмония. КТ-3. ДН II ст.

Жалобы: тяжелая одышка, сухой кашель.

<u>Из анамнеза:</u> по поводу ИЛФ наблюдается с 2018 г., в течение 3-х лет принимает пирфенидон (с небольшими перерывами).

<u>SpO</u> – 92-94%.

<u>ЭхоКГ</u> от 08.04.2021 г.: давление в легочной артерии — 41 мм рт.ст. (легочная гипертензия).

<u>Анализ крови</u> от 28.04.2021 г.: Д-димер — 812 нг/мл, СРБ — 134 мг/л, прокальцитонин — 0,04 нг/мл, ферритин — 105 мкг/л.

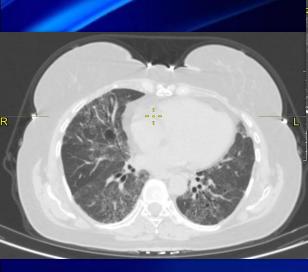
<u>PHK SARS-CoV-2</u> от 29.04.2021 г. — обнаружена.

<u>Бодиплетизмография от 15.05.2019 г.:</u> умеренные нарушения вентиляционной способности легких по рестриктивному типу, общая емкость легких снижена — 63,4%.

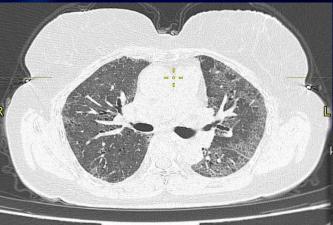
Бодиплетизмография от 08.04.2021 г.: умеренные нарушения вентиляционной способности легких по рестриктивному типу, общая емкость легких снижена — 64,9%.

Time

		_		
		Pred	Act1	%Act1/Pred
	R eff[kPa*s/1]	0.30	0.18	59.8
	R IN[kPa*s/1]		0.35	
	R EX[kPa*s/1]		0.31	
	R tot[kPa*s/l]	0.30	0.29	96.2
	TLC[1]	3.71	2.35	63.4
	VC MAX[1]	1.77	1.29	73.0
	ERV[1]	0.66	0.15	22.1
4	RV[1]	1.63	1.06	65.3
	ITGV[1]	2.29	1.21	52.9
	RV % TLC[%]	40.72	45.23	111.1
	FVC[1]	1.83	1.24	68.0
	FEV 1[1]	1.49	1.18	79.2
d	FEV 1 % FVC[%]		94.97	
	FEV 1 % VC MAX[%]	76.94	91.43	118.8
	FEF 25[1/s]	4.64	5.64	121.5
	FEF 50[1/s]	3.09	3.49	113.2
	FEF 75[1/s]	1.02	1.11	109.1
	PEF[1/s]	4.89	5.64	115.3
	MMEF 75/25[1/s]	2.54	3.12	122.7
	BF[1/min]	20.00	23.62	118.1
	VT[1]	0.37	0.56	152.0
				Andrew II or in
	FVC IN[1]	1.77	1.29	73.0
	Substance			
	Dose		15 05 0010	
	Date		15.05.2019	
	Time		12:22:56	


	Pred	Act1	%Act1/Pred
R eff[kPa*s/1]	0.30	0.05	18.3
R IN[kPa*s/1]		0.11	
R EX[kPa*s/1]		0.14	
R tot[kPa*s/1]	0.30	0.13	43.8
TLC[1]	3.71	2.41	64.9
VC MAX[1]	1.77	1.32	74.7
ERV[1]	0.66	0.30	45.1
RV[1]	1.63	1.09	67.0
ITGV[1]	2.29	1.39	60.7
RV % TLC[%]	40.72	45.27	111.2

FVC[1]	1.83	1.17	64.0
FEV 1[1]	1.49	1.13	76.1
FEV 1 % FVC[%]		96.91	
FEV 1 % VC MAX[%]	76.94	85.75	111.5
FEF 25[1/s]	4.64	6.34	136.7
FEF 50[1/s]	3.09	3.57	115.7
FEF 75[1/s]	1.02	0.76	73.9
PEF[1/s]	4.89	6.43	131.5
MMEF 75/25[1/s]	2.54	2.78	109.1
BF[1/min]	20.00	21.43	107.1
VT[1]	0.37	0.65	175.7
FVC IN[1]	1.77	1.32	74.7
			A CONTRACTOR OF THE PARTY OF TH
Substance			
Dose			
Date		08.04.2021	^


12:53:54

КТ ОГК в динамике

07.04.2021 г. (COVID-19 –ассоциированная пневмония, КТ-3)

07.02.2020 г. 13.09.2021 г.

Мужчина Г., 67 л.

<u>Жалобы:</u> сухой кашель, одышка при физической нагрузке, общая слабость.

<u>Из анамнеза:</u> болеет с 2018 г., когда после перенесенной ОРВИ стал отмечать персистирующий кашель. При обследовании на КТ ОГК были выявлены изменения в виде ячеистого пневмофиброза; выставлен диагноз: обычная интерстициальная пневмония.

В октябре 2020 г. перенес COVID-19-ассоциированную пневмонию, КТ-2. В анализе крови: Д-димер — 784 нг/мл, СРБ — 115 мг/л, прокальцитонин — 0,03 нг/мл, интерлейкин-6 — 17 пг/мл. Лечился в стационаре по м/ж: дексаметазон, фраксипарин, хумира, цефтриаксон. Со временем стал отмечать значительное усиление отдышки, самостоятельно принимал лонгидазу. На КТ и ботиплетизмографии — отрицательная динамика. При аускультации в задне-боковых отделах легких — крепитирующие хрипы. С момента постановки диагноза ИЛФ регулярно принимает витамин Е, L-аргинин, флуимуцил.

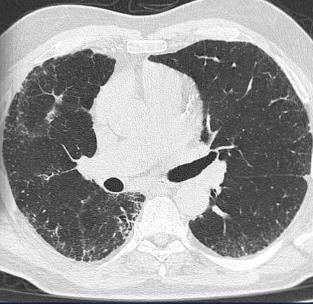
<u>SpO</u>₂ – 93-94%.

Спирометрия: умеренные изменения по обструктивному типу. Явная отрицательная динамика 2019 г.— 2020 г.— 2022 г.

	7-10-10-10-10-10-10-10-10-10-10-10-10-10-		name of the second	
Pred	Act1	Act2		% (Best/Pred)
VC MAX[1]5.00			5.55	111.1
VC IN[1]5.00			5.33	106.7
VC EX[1]5.00			5.55	111.1
VT[1]0.78				
IC[1]3.77				
ERV[1]1.23				
BF[1/min]0.00				
FVC[1]4.80	5.46	5.55	5.55	115.7
FEV 1[1]3.71	4.34	4.40	4.40	118.6
FEV 1 % VC MAX[%]5.51	78.21	79.19	79.19	104.9
FEV 1 % FVC[%]	79.60	79.19	79.19	
PEF[1/s]8.90	12.96	9.38	9.38	105.4
FEF 25[1/s]7.91	11.49	9.38	9.38	118.6
FEF 50[1/s]4.76	5.73	5.99	5.99	125.9
FEF 75[1/s]1.88	1.12	1.19	1.19	63.5
MEF[1/s]				
MMEF 75/25[1/s]3.55	3.85	3.76	3.76	105.8
FEF 75/85[1/s]0.68	0.75	0.75	0.75	110.8
T EX[s]				
Substance				
Dose				*
Date	100220)		
Time	13:27			

Pı	red A	et1	Act2		% (Best/Pred)
VC MAX[1]5.	.03			5.74	114.1
VC IN[1]5.	.03			4.13	82.2
VC EX[1]5.	.03			5.74	114.1
VT[1]0.	. 74				
IC[1]3.	.78				
ERV[1]1.	.24				
BF[1/min][0.	.00				
FVC[1]4.					118.3
FEV 1[1]3.	.74 4.	. 64	4.59	4.64	124.0
FEV 1 % VC MAX[%]5.			80.04	80.79	106.7
FEV, 1 % FVC[%]	81.	.20 8	80.04	81.20	
PEF[1/s]8.	.94 9.	.43	13.63	9.43	105.4
FEF 25[1/s]7.	.94 9.	.43	12.36	9.43	118.7
FEF 50[1/s]4.	.79 6.	.78	5.09	6.78	141.6
FEF 75[1/s]1.	.90 1.	41	1.44	1.41	74.1
MEF[1/s]					
MMEF 75/25[1/s]3.	.60 4.	64	4.01	4.64	129.2
FEF 75/85[1/s]0.	.70 0.	.78	0.86	0.78	111.9
T EX[s]					
Substance					
Dose					
Date	150)419			
Time	13:	12			
	100000000				

		7. Jan. 1900			
Pred	Act1	Act2	Act3	Best	% (Best/Pred)
VC MAX[1]4.82				5.11	106.0
VC IN[1]4.82				4.08	84.6
VC EX[1]4.82				5.11	106.0
VT[1]0.74					
IC[1]3.64					
ERV[1]1.18					
BF[1/min20.00					
FVC[1]4.63	5.11	4.90	4.97	5.11	110.3
FEV 1[1]3.57	3.91	4.00	3.93	3.91	109.6
FEV 1 % VC MAX[%]5.15	76.49	78.25	76.96	76.49	101.8
FEV 1 % FVC[%]		81.54	79.13	76.49	
PEF[1/s]8.69	13.42	15.28	11.79	13.42	154.5
FEF 25[1/s]7.74	12.10	14.17	11.79	12.10	156.2
FEF 50[1/s]4.62	4.41	4.85	5.66	4.41	95.3
FEF 75[1/s]1.77	0.80	1.16	0.99	0.80	45.1
MEF[1/s]					
MMEF 75/25[1/s]3.43	2.88	3.52	3.43	2.88	83.9
FEF 75/85[1/s]0.62	0.41	0.63	0.60	0.41	66.3
T EX[s]					
Substance					
Dose					<u>*</u>



КТ ОГК в динамике

16.10.2020 г. (COVID-19-ассоциированная пневмония, КТ-2)

21.12.2021 г.

Мужчина В., 49 л.

Идиопатический легочный фиброз, стадия формирования «сотового легкого». ДН III ст. Хроническое легочное сердце. Легочная гипертензия, ФК-2, НК 2.

В апреле 2021 г. — COVID-19 с положительным лабораторным тестом U07.1., тяжелое течение. Двусторонняя полисегментарная пневмония. КТ-3. ДН II ст.

Жалобы: одышка при минимальной физической нагрузке.

Из анамнеза: морфологически диагноз ИЛФ подтвержден в 2019 г. (22.01.2019 г. – краевая резекция S3 левого легкого (биопсия)): гистологические изменения, характерные дл обычной интерстициальной пневмонии (вариант ИЛФ). В качестве базисной терапии самостоятельно принимал: метилпреднизолон 16-20 мг/сут.

*SpO*₂ − 90-92%

ЭхоКГ от 21.12.2021 г.: давление в легочной артерии — 58 мм рт.ст. (легочная гипертензия).

<u>AT к SARS-CoV-2</u> om 10.12.2021 г. – IgG >500

<u>Бодиплетизмография от 13.02.2019 г.:</u> вентиляционная способность легких не нарушена. Общая емкость легких снижена — 74,7%.

<u>Бодиплетизмография от 21.12.2021 г.:</u> резкие нарушения вентиляционной способности легких по рестриктивному типу. Общая емкость легких снижена – 50%.

	2	Pred	Act1	%Act1/Pred
	R eff[kPa*s/1]	0.30	0.11	37.8
	R IN[kPa*s/1]		0.13	
	R EX[kPa*s/1]		0.19	
	R tot[kPa*s/1]	0.30	0.16	53.4
	TLC[1]	7.62	5.69	74.7
	VC MAX[1]	5.17	4.55	88.0
	ERV[1]	1.39	1.57	113.3
П	RV[1]	2.28	1.14	50.0
	ITGV[1]	3.67	2.71	73.9
	RV % TLC[%]	33.46	20.03	59.9
				1.7
	FVC[1]	4.96	4.27	86.1
	FEV 1[1]	3.97	3.80	95.6
A	FEV 1 % FVC[%]		88.99	100 5
	FEV 1 % VC MAX[%]	78.21	83.44	106.7
	FEF 25[1/s]	8.13	10.88	133.8
	FEF 50[1/s]	5.07	5.69	112.2
	FEF 75[1/s]	2.16	1.45	67.1
	PEF[1/s]	9.30	11.92	128.2
	MMEF 75/25[1/s]	4.12	4.44	107.8
	BF[1/min]	20.00	23.44	117.2
	VT[1]	0.66	1.32	200.0
	FVC IN[1]	5.17	4.53	87.6
	Substance			
	Dose			
	Date		13.02.2019	
	Time		11:58:13	


	Pred	Act1	%Act1/Pred
R eff[kPa*s/1]	0.30	0.19	63.3
R IN[kPa*s/1]		0.21	
R EX[kPa*s/1]		0.23	
R tot[kPa*s/1]	0.30	0.22	74.9
TLC[1]	7.62	3.81	50.0
VC MAX[1]	5.17	2.49	48.1
ERV[1]	1.39	0.89	64.1
RV[1]	2.28	1.32	58.0
ITGV[1]	3.67	2.21	60.3
RV % TLC[%]	33.46	34.71	103.7
FVC[1]	4.96	2.42	48.9
FEV 1[1]	3.97	2.20	55.5
FEV 1 % FVC[%]		90.90	
FEV 1 % VC MAX[%]	78.21	88.46	113.1
FEF 25[1/s]	8.13	12.67	155.9
FEF 50[1/s]	5.07	6.35	125.1
FEF 75[1/s]	2.16	1.29	59.7
PEF[1/s]	9.30	12.67	136.3
MMEF 75/25[1/s]	4.12	4.62	112.1
BF[1/min]	20.00	21.96	109.8
VT[1]	0.66	1.19	180.5
FVC IN[1]	5.17	2.44	47.1
Substance			
Dose			
Date		21.12.2021	

11:35:47

КТ ОГК в динамике

07.04.2021 (COVID-19-ассоциированная пневмония, КТ-3)

01.10.2019 10.12.2021

Выводы

▶ На сегодняшний день имеются предварительные данные о различных вариантах течения и исхода коронавирусной инфекции у пациентов с ИЗЛ в зависимости от принимаемой ими на постоянной основе базисной терапии.

Выводы

- ➤ Антифибротические терапия, используемая для лечения ИЗЛ, не сопряжена с дополнительными рисками, и поэтому не требует отмены на фоне заражения COVID-19.
- Пациентам с ИЗЛ, получающим глюкокортикостероиды, следует продолжать их прием в минимально эффективной дозе.
- Продолжение приема ранее назначенных цитостатических препаратов возможно в том случае, если польза превосходит риск.

Благодарим за внимание!